Increasing thermal stability
of envelope dimer proteins in
Dengue virus

Gabriel Gonzalez
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Background

* Orthoflavivirus causes multiple
diseases (e.g., Dengue)
« Envelope protein (E), the primary
component of the viral surface
* 90 E dimers per viral particle
« Mediate receptor binding and fusion
 Target for neutralizing antibodies

 Vaccines target the E dimer

* E dimerization is unstable at 37°C
« Different species are more stable

M Protein

Capsid Protein

E Dimer

‘Genomic RNA

By Girish Khera, Scientific Animations - http://www.scientificanimations.com/,
Public Domain, https://commons.wikimedia.org/w/index.php?curid=48729702

DeNgue Virus |Low

ENVelope dimerization
plasmids ‘“
00 m o0

strain __: ’ SN

OO
/

-

........ -

@- BN

Loy e

.....

TnghIstabIe
dimerization

unvaccinated

;a Vi
@

Irnproved\ Rk gy ) \
strain ‘.‘ '._

vaccmaled

-

Tlnfectlon
risk

r.ﬂ“

Iasrmg
protection

g

I_II

esevere dengue
eriskier 2" infection

Healthy

Institute for Vaccine Research and Devleopment - 2025

Llfe/
R
& ¥0 ""C‘o
& 2,
< ©




Objectives

 Set of amino acid substitutions to increase E thermostability

« Minimum number of substitutions to avoid distorting the structure
 Avoid affecting the neutralizing epitopes

 Avoid using substitutions patented by similar studies




Genetic algorithm (GA) to simulate evolution

&“‘”’“m  DENV 3 structure was used as input

* GA algorithm ran 30 loops per
execution with random selection of
5 substitutions

x10 loops

Improvement 4
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Binding Energy

| * 100 executions were run in parallel in
?r:gl"‘mostability tWO PCS

! c S, RN » Each execution yielded ~300 models
\ s =y * = >60,000 models to analyze
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Most frequent amino acid substitutions s
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« 63K+ “improving” datasets J = 4N
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e Substitutions to residues e
* 38% to hydrophobic I 216
« 23% to aromatic ol
* 19% to positive charge %0 §
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Frequently modified protein zones

Top30 mutated sites

Top20 mutated positively charged sites
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Candidates

81 “promising” AA substitution sets chosen for wet bench validation
« ENV expressed to measure the dimerization with a dot-blot test

« HEK293T cells were transfected with PEI MAX, and the culture
supernatant was harvested 72 hours post-transfection. The plasmid

used was a pCXSN vector carrying the E protein with a His tag.
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The candidates were in poorer expression/dimerization than the WT
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What went wrong?

 Poor folding of hypermutated proteins
* up to 31 sites

» Low number of naturally occurring substitutions
« Contrasted against GISAID sequences |
» High risk of incompatible substitutions 1

« Artefacts from static in silico structures

* Conclusion: the substitution proposal 0 TG T e et
phase of the algorithm was too naive R s

0% 10% 20%
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Redesigning the approach

« Extending the in silico validation to estimate dissociation
energies/temperatures

» Selection of sites based on the effects in charge and hydrophobic
interactions




Contrasting DNV3 to higher yield viruses

Interface sites were contrasted and proposed as substitutions

« ENV dimer proteins were simulated in water for 10 ns
» At temperature = 300°K (~27°C) and 310°K (~37°C)
- Target sites: inter-chain contact sites that lose contact (> 4 A = 0.4 nm) at
higher temperature

» Substitutions: homologous non-conserved amino acid sites in high-yield
viruses that don’t lose contact

* Most changes:
* Increased the hydrophobicity around the fusion loop

» Complemented the charge along the interface
* Lys—> Arg and Lys = Glu in two interacting sites, reducing electrostatic repulsion




New candidates — Predicted interaction energy

Less energy needed for a dimer Interaction Energy (FOIdX)
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New evidence: Steered Molecular Dynamics
simulation for different interchain distances
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Q: 700/0
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aring thermal

stability across ENV dimers

Interface Decay Profile: DNV3Q_295.0K

Slope calculated from start to first window under Q = 0.1
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Interface Decay Profile: THOL_295.0K
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-13.9 kcal/mol

Fraction of Native Contacts (Q)

Binding energy

omparing thermal stability across ENV dimers

)
E 1.00
©

()
= |5
AN | o075
N |3
- |5

1 o

.. ('D

> 3 050
E) 2

o |

c |8

Q |Go2s
m w
=
-g 0.00
m

Interface Decay Profile: DNV3_31_295.0K

Slope calculated from start to first window under Q = 0.1
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Updating the algorithm  fmocoee
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Next steps

e Use the GA to combine effective mutations

 Providing the melting temperature for all candidates to rank the
stability

» Wet bench expression of modified proteins to assess stability

 Analyzing antibodies against mutants to neutralize WT DENV3
 Analyzing the antigenicity of mutants
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